翻訳と辞書
Words near each other
・ Hazard Bailey Terrill
・ Hazard Bombers
・ Hazard Center (San Diego Trolley station)
・ Hazard Communication Standard
・ Hazard Community and Technical College
・ Hazard E. Reeves
・ Hazard family
・ Hazard Farmstead (Joyner Site RI-706)
・ Hazard H. Sheldon House
・ Hazard High School
・ Hazard map
・ Hazard mitigation in the Outer Banks
・ Hazard Park
・ Hazard Pay
・ Hazard Perception Test
Hazard pointer
・ Hazard quotient
・ Hazard ratio
・ Hazard Rock
・ Hazard Stevens
・ Hazard symbol
・ Hazard's Pavilion
・ Hazard, Kentucky
・ Hazard, Nebraska
・ Hazardia
・ Hazardia (plant)
・ Hazardia berberidis
・ Hazardia brickellioides
・ Hazardia cana
・ Hazardia detonsa


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hazard pointer : ウィキペディア英語版
Hazard pointer

In a multithreaded computing environment, hazard pointers are one approach to solving the problems posed by dynamic memory management of the nodes in a lock-free data structure. These problems generally arise only in environments that don't have automatic garbage collection.〔Anthony Williams. ''C++ Concurrency in Action: Practical Multithreading.'' Manning:Shelter Island, 2012. See particularly Chapter 7.2, "Examples of lock-free data structures".〕
Any lock-free data structure that uses the compare-and-swap primitive must deal with the ABA problem. For example, in a lock-free stack represented as an intrusively linked list, one thread may be attempting to pop an item from the front of the stack (A → B → C). It remembers the second-from-top value "B", and then performs
compare_and_swap(target=&head, newvalue=B, expected=A). Unfortunately, in the middle of this operation, another thread may have done two pops and then pushed A back on top, resulting in the stack (A → C). The compare-and-swap succeeds in swapping `head` with `B`, and the result is that the stack now contains garbage (a pointer to the freed element "B").
Furthermore, any lock-free algorithm containing code of the form

Node
* currentNode = this->head; // assume the load from "this->head" is atomic
Node
* nextNode = currentNode->next; // assume this load is also atomic

suffers from another major problem, in the absence of automatic garbage collection. In between those two lines, it is possible that another thread may pop the node pointed to by this->head and deallocate it, meaning that the memory access through currentNode on the second line reads deallocated memory (which may in fact already be in use by some other thread for a completely different purpose).
Hazard pointers can be used to address both of these problems. In a hazard-pointer system, each thread keeps a list of hazard pointers indicating which nodes the thread is currently accessing. (In many systems this "list" may be provably limited to only one〔〔 (C++ oriented article)〕 or two elements.) Nodes on the hazard pointer list must not be modified or deallocated by any other thread.
When a thread wishes to remove a node, it places it on a list of nodes "to be freed later", but does not actually deallocate the node's memory until no other thread's hazard list contains the pointer. This manual garbage collection can be done by a dedicated garbage-collection thread (if the list "to be freed later" is shared by all the threads); alternatively, cleaning up the "to be freed" list can be done by each worker thread as part of an operation such as "pop" (in which case each worker thread can be responsible for its own "to be freed" list).
In 2002, Maged Michael of IBM filed an application for a U.S. patent on the hazard pointer technique, but the application was abandoned in 2010.
Alternatives to hazard pointers include reference counting.〔
==See also==

*Concurrent data structure
*Hazard (computer architecture)
*Finalizer

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hazard pointer」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.